Package ‘glads’

March 30, 2024
Type Package

Title Genomic Landscape of Divergence Simulation
Version 0.1.8

Author Claudio S. Quilodran, Kristen Ruegg, Ashley T. Sendell-
Price, Sonya Clegg, Tim Coulson, Eric Anderson.

Maintainer Claudio S. Quilodran <claudio.quilodran@unige.ch>

Description The glads package is an individual-based framework for forward demographic, ge-
netic and genomic simulations. The main aim of the R package is therefore to simulate the diver-
gence of populations further in time, elucidating genomic patterns that may be gener-
ated by a range of demographic and genetic processes.

License GPL-2
LazyData TRUE

Imports dplyr,
magrittr,

pegas,
progress,
Repp (>=0.12.7)

LinkingTo Rcpp
RoxygenNote 7.2.3
Encoding UTF-8

R topics documented:

glads-package 2
EVOIVE . . . L 2
fitness L 13
initial.struct 14
Phenotype L e e e 15
SITUCIZPEZAS « . v v v v e e e e e e e e e e e e e e e e e e 17
Index 18

2 evolve

glads-package Genomic Landscape of Divergence Simulation

Description

The package glads is an individual-based framework for forward demographic, genetic and genomic
simulations. The main aim of the R package is to simulate the divergence of populations further in
time, elucidating genomic patterns that may be generated by a range of demographic and genetic
processes.

Details

The list of functions can be displayed with library(help = glads).

The main function of the package glads is "evolve”, which allows the forward simulation of the
genetic structure of populations under various scenarios of drift and selection. The supported data
are allelic frequencies, SNPs or sequences of DNA. User may either simulate a theoretical dataset or
directly work with their own empirical observations. In any case, the observation should be arranged
in a two-dimensional array that represents a pair of homologous chromosomes. Each element of the
array is an integer defining the copy of a given allele at a given locus.

evolve Evolution of genetic and genomic landscapes

Description

This function simulates the evolution of individual-based populations forward in time.

Usage
evolve(
X}
time,
type = c("constant”, "dynamic”, "additive", "custom"),
recombination = c("map”, "average"),

recom.rate,

loci.pos = NULL,

chromo_mb = NULL,

init.sex = NULL,

migration.rate = NULL,

mutation.rate = NULL,

param.z = NULL,

param.w = NULL,

fun = c(phenotype = NULL, fitness = NULL),

admixture = list(taxa = NULL, dd = FALSE, eqvm = FALSE, nmin = 10)

evolve

Arguments

X

time

type

recombination

recom.rate

loci.pos

chromo_mb

init.sex

migration.rate

mutation.rate

param.z

param.w

fun

admixture

List of objects of class "struct” with the initial genetic structure of populations.

Number of simulated generations. It could also be a two-element vector with
the number of simulated generations and the elapsed time to record the outputs.

Type of simulated evolution. Current options are ’constant’, ’dynamic’, *addi-
tive’, and ’custom’ (see Details).

Type of recombination between homologous chromosomes. Current options are
’map’ and ’average’ (see Details).

A numerical value for the recombination type ’average’, or a vector of nl — 1
elements, with the recombination rate between neighbouring loci for type *map’
(nl: number of loci) (see Details).

A vector with the position of loci. The default value is NULL, but it is required
for the recombination type ’average’.

A numerical value with the size of the simulated chromosome (in megabase).
The default value is NULL, but it is required for the recombination type ’aver-
age’.

A list of vectors defining the sex of the initial individuals in the populations (1:
females and 2: males). The default value is NULL and assigns the sex of the

first generation randomly.

A single value setting the migration rate among all populations, or a square ma-
trix of order equal to the number of populations. The last matrix has migration
rate values for each pair of populations (migration[’from’, ’to’]). Alternatively,
this parameter could be a list in which the first element is a vector displaying
the ’t’ generations that have a change of migration pattern. The following ’t+1’
elements are the migration rates before the change of migration pattern (single
values and/or square matrices). A value of m;; = 0 means no migration and
thus no gene flow between populations ¢ and j, while a value of 0.5 means ran-
dom migration (and hence random reproduction) between them. This parameter
is ignored for single population simulations. The default value is NULL with no
migration among populations.

A numerical value setting the mutation rate per site. It is currently restricted
to biallelic SNPs (genetic structures with values 1 or 2). The default value is
NULL.

A list with the parameter values for the function computing phenotypes. The
list of parameters for each population should be included as a list of list (see
Example)

A list with the parameter values for the fitness function. The list of parameters
for each population should be included as a list of list (see Example)

A character vector with the names of the custom phenotype and fitness functions.
The default value is NULL, but it is required for the ’custom’ type of evolution

A list with four values. The first argument is a vector of integers defining the
taxon identifier ("taxa’) of each population (see Example). The default value is
NULL. The second argument is a logical value. If TRUE the admixture between
taxa is density-dependent (see Details). The default value is FALSE. The third
argument is a logical value representing equivalent migration between taxa. If
TRUE the resulting individuals migrating between taxa are equivalent to the
number of migrants sent by the smaller population. The default value is FALSE.
The last argument is an integer defining the minimum population size for starting
the admixture between different taxa. The default value is 10.

4 evolve

Details

This function returns a list of populations composed of two-dimensional arrays that represents a
pair of homologous chromosomes. Rows represent individuals and columns the different loci. Each
element of the array is an integer defining the copy of a given allele at a given locus.

Different types of evolution are available for simulations:

* ’constant’ a constant population size over time. There is no selection, equal sex ratio and each
breeding pair generates two offspring. This case represent neutral evolution in which variation
are due to recombination, mutation and migration. Variations in the population sizes are also
possible due to the effect of migration.

* ’dynamic’ a dynamic population size over time. This type of evolution introduces to type
“constant’ an unequal sex ratio, a variable number of offspring and a density-dependent demo-
graphic effect to avoid exponential growth. A list with the parameters for the phenotype func-
tion (param.z=list(sex.ratio)) and for the fitness function (param.w=list(mean.fitness, d.d)) are
required:

— sex.ratio: a numerical value defining the sex ratio of populations. This value should be
included within a list in *param.z’.

— mean.fitness: an integer with the mean number of offsprings generated by breeding pair.
This value should be included within a list in "param.w’.

— d.d: numerical value introducing the density-dependent demographic effect to avoid ex-
ponential growth. This value should be included within a list in *param.w’.
The sex of individuals (1: females and 2: males) are generated by a binomial distribution
with probability of being a male equal to the ’sex.ratio’ The fitness of individuals (in
number of offspring) are obtained from: Poisson(\) — N x d.d, in which X is equal to
’mean.fitness’ and N represents the population size.

* ’additive’ additive phenotype evolution. This function introduce quantitative phenotypes and
convergent or divergent selection as implemented in Quilodrédn et al. (2019). A list with the
parameters for the phenotype function (param.z=list(sex.ratio, fitness.pos, bvs, add.loci, e.v))
and for the fitness function (param.w=list(b0,b1,b2,b3, d.v, add.loci)) are required.

The following parameters are needed for the computation of phenotypes (2):

— sex.ratio: A numerical value defining the sex ratio of populations. This value should be
included within a list in *param.z’.

— fitness.pos: A vector with the position of the additive loci participating in the computation
of phenotypes. This value should be included within a list in param.z’.

— bvs: A matrix with the breeding values of alleles on each loci. The number of rows
is equal to the number of additive loci, while the number of columns is equal to the
maximum number of alleles in a locus. This object should be included within a list in
‘param.z’.

— add.loci: An integer with the total number of additive loci participating in the computation
of phenotypes. This object should be included within a list in ’param.z’.

— e.v: A numerical value defining a stochastic environmental variant in the computation of
phenotypes. This value should be included within a list in *param.z’.
The default phenotype function (z) focus on an additive genetic genotype-phenotype map.
Therefore, the sum of values of alleles at each locus gives a breeding value (b,,) for each
individual at a given locus. The sum of breeding values across loci gives a breeding value
for the phenotypes (z), which is computed as follows:

z= va +e.(0,0¢)
v=1

evolve

Where n,, is equal to add.loci’ and o, is equal to ’e.v’. The environmental contribution
€e 1s assumed to be stochastic and normally distributed, with a mean of 0 and standard
variation ’e.v’. This function returns a data.frame with rows equal to the number of
individuals and two columns (’sex’ and ’z’)

The default fitness function (w) computes a Gaussian relationship between z and w. The
following parameters are needed:

— b0: A numerical value defining the maximum number of offspring generated by breeding
pair. This value should be included within a list in ’param.w’.

— bl: A numerical value defining the phenotypic optima. In the gaussiam relationship be-
tween z and w, the value of 'b1’ represent the z value expected to produce the maximum
number of offspring. This value should be included within a list in *param.w’. The dif-
ference in phenotypic optima between the populations drives the strength of ’divergent
selection’. Populations exposed to equal phenotypic optima are considered to be under
’concordant selection’.

— b2: A numerical value defining the variance of the Gaussian curve. This value should be
included within a list in *param.z’.

— b3: A numerical value defining the intensity of the density-dependence on the fitness
of individuals in a population of size N. This value should be included within a list in
‘param.w’.

— d.v: A numerical value defining a stochastic demographic variant in the fitness of indi-
viduals. This value should be included within a list in ’param.w’.

— add.loci: Aninteger with the total number of additive loci participating in the computation
of phenotypes. This object should be included within a list in param.w’.

The default fitness function (w) has the form:

1 (szlna 2

w=bgexp 2\ P2ma) —bsN +¢4(0,04)

Where n,, is equal to ’add.loci’, NV is the population size and o is equal to ’d.v’. The
demographic variant €4 is assumed to be stochastic and normally distributed, with a mean
of 0 and standard variation ’d.v’. This function returns a vector with the fitness value (w)
of individuals.

* ’custom’ is a custom computation of phenotypes and fitness functions. These functions will

define the type of selection fitting particular case studies. The name of each user defined
function should be introduced in the ’fun’ parameter as a character vector with two elements
e.g. c(phenotype’, fitness’). Assuming a per-generation time step, the potential number of
offspring produced by each individual depends on its phenotype w = f(z), which in turn de-
pends on the individual genotype and on the environment z = g(G, E). G is a numeric value
determined by an individual’s genotype, representing the genetic value of the genotype. In the
case of an additive genetic map, the genetic value of a genotype will be a breeding value. F
represents the effect of the environment on phenotypic expression, and this enables the effects
of plasticity on phenotypic expression to be captured. The list of parameters ’param.z’ and
’param.w’ include all needed parameters for the custom ’phenotype’ and ’fitness’ functions.
These lists should not include variables. For the phenotype function, the variable genetic
structure of individuals is already included as the object ’struct’, which should also be the first
argument of the custom phenotype function, followed by "...". This means that all parameters
used in the custom phenotype function are only included in ’param.z’. The custom phenotype
function should return a matrix with two columns, named "z" and "sex". The first column
is the resulting phenotype value and the second column represents the assignation of sex to
each individual. For the fitness function, the variable individual phenotype value, sex of indi-
viduals and the population size are already included in the environment. The function should

nonon "wo_n

start with these three elements ("z","sex","n"), followed by "...". The user does not need to

6 evolve

use all three of these variables. All parameters needed for the custom fitness function should
be included in ’param.w’. This function should return a vector *w’ with fitness values for the
individuals (see Examples).

The recombination between homologous chromosomes are either of type 'map’ or ’average’. The
first case needs a vector with the recombination rate (p) between neigbour loci of length equal to
nl — 1 (nl: number of loci). The probability of having a crossover (1) or not (0) is uniformly
distributed at a rate defined by the value of p between loci (i.e. positions with a probability smaller
than p recombine). The uniform distribution allows each position with the same values of p to have
an equal chance of crossover across all iterations. There is no recombination between homologous
chromosomes when p = 0, both loci are completely linked (e.g. within an inversion or situated
close to centromeres), while with a value of p = 0.5, the recombination rate is completely random
(i.e. both loci are very distant on the same chromosome or are located on different chromosomes).
A value of p < 0.5 means the loci are physically linked. The second case, when recombination
is of type ’average’, a numerical value with the average recombination rate per base pair should
be supplied, the loci position and the size of the chromosome in megabase are also required. The
crossover points are exponentially distributed as a Poisson process (see Example).

Value

A list of objects of class "struct” or array. The initial and final genetic diversity are recorded on
the list. The outputs of additional generations are recorded when specified by the parameter ‘time’.

References

Quilodran, C. S., Ruegg, K., Sendell-Price, A. T., Anderson, E., Coulson, T. and Clegg, S. (2020).
The many population genetic and demographic routes to islands of genomic divergence. Methods
in Ecology and Evolution 11(1):6-21.. doi:10.1111/2041210X.13324.

See Also

initial.struct

Examples

Not run:

We start with a population of 20 individuals and 10 biallelic SNPs
initial.population.size <- 20

n.loci <- 10

n.alleles.per.locus <- 2

startl <- initial.struct(initial.population.size,n.loci,n.alleles.per.locus)

HHHEHHHEEE A
Type of evolution = "constant”
B S R

We set a recombination map and the number of generations to be simulated
recom.map <- rep(@.5, n.loci-1) #all loci are independent

n.gens <- 10

pop <- evolve(list(startl), n.gens, "constant”, "map"”, recom.map)

A similar simulation but with recombination type "average".
We need to specify the position of loci and the size of the chromosome (MB)
loci.pos<- sample(80000: 12000000, 10) #random loci positions

https://doi.org/10.1111/2041-210X.13324

evolve 7

chromo_mb<-12000000 #chromosome size
crossover <- 1/100000000.0 #average recombination rate (1 cM/MB)
pop <- evolve(list(startl), n.gens, "constant”, "average"”, crossover, loci.pos, chromo_mb)

We include a mutation rate for the simulation of biallelic loci
pop <- evolve(list(startl), n.gens, "constant”, "average", crossover,
loci.pos, chromo_mb, mutation.rate = 0.0001)

A second population is included to incorporate the effect of migration

start2 <- initial.struct(initial.population.size,n.loci,n.alleles.per.locus)

pop <- evolve(list(startl, start2), n.gens, "constant”, "average", crossover,
loci.pos, chromo_mb, migration.rate = 0.01)

The sex of individuals may be set for the starting generations.

sex.startl <- sample(1:2, initial.population.size, replace=T)

sex.start2 <- sample(1:2, initial.population.size, replace=T)

init.sex <- list(sex.startl, sex.start2)

pop <- evolve(list(startl, start2), n.gens, "constant”, "average"”, crossover,
loci.pos, chromo_mb, init.sex = init.sex)

HHHHHHHH A
Type of evolution = "dynamic"
WA A

We set the parameters for the computation of phenotypes and for the
fitness function of the type 'dynamic'’

sex.ratio <- 0.5

mean.fitness <- 3 #mean number of offsprings per breeding pair

d.d <- 0.01 #density-dependent demographic effect

set.seed(1) #setting the seed for reproducible random numbers
pop <- evolve(list(start1), n.gens, "dynamic”, "map”, recom.map, param.z = list(list(sex.ratio)),
param.w = list(list(mean.fitness, d.d)))

HHHHHHHEEE A
Type of evolution = "additive"
HHHHHHAEEE A

We set the parameters for the computation of phenotypes and for
the fitness function of the type 'additive'

sex.ratio <- 0.5

fitness.pos <- 1:n.loci #all simulated loci are additive

add.loci <- n.loci

next line is breeding value of additive loci
bvs <- t(array(seq(@,1, length = n.alleles.per.locus) ,c(n.alleles.per.locus, add.loci)))

e.v <- 0.01 # stochastic environmental variant
param.z <- list(sex.ratio, fitness.pos, bvs, add.loci, e.v)

b0 <- 6 # maximum number of offspring

b1 <- 10 # phenotypic optima

b2 <- 4 # variance of the Gaussian curve

b3 <- 0.01 # intensity of the density-dependence
d.v = 1 # stochastic demographic variant

param.w <- list(b@,b1,b2,b3, d.v)

evolve

set.seed(1) #setting the seed for reproducible random numbers
pop<-evolve(list(startl), n.gens, "additive”, "map"”, recom.map,
param.z = list(param.z), param.w = list(param.w))

HHHHHHEEHEE AR
Type of evolution = "custom”
B S R S

We set a custom 'phenotype' and 'fitness' function.
In this example, the custom functions are very similar to the default 'additive' ones.

phenotype2 <- function(struct, ...){

pop.struct <- struct[, fitness.pos,]

temp <- dim(pop.struct)

mat <- matrix(1:temp[2],temp[1],temp[2],byrow=TRUE)

the next line gives an array that gives the locus index at each position in pop.struct
loci.n <- array(mat,c(temp[1],temp[2],2))

new.n <- (pop.struct-1)*add.loci+loci.n

bvv <- as.vector(bvs) # turn to bvs

outp <- array(bvv[lnew.n],c(temp[1],temp[2],2))
z <- apply(outp,1,sum)+rnorm(temp[1],0,e.v)
sex <- rbinom(nrow(struct), 1, sex.ratio)+1
return(cbind(z = z, sex = sex))

3
fitness2 <- function(z, sex, n, ...){

a <- bo

b <- b1l

c <- b2

w <- round(a*exp(-((z-b)*2)/(2*%(c)*2)) - b3*n + rnorm(n,@,d.v) , @)
w <- ifelse(w<0,0,w)

return(w)

3

set.seed(1) #setting the seed for reproducible random numbers
pop<-evolve(list(start1), n.gens, "custom”, "map”, recom.map,
param.z =list(sex.ratio = sex.ratio, fitness.pos = fitness.pos,
bvs = bvs, add.loci = add.loci, e.v = e.v),
param.w = list(b® = b0, bl = b1, b2 = b2, b3 = b3, d.v = d.v),
fun=c("phenotype2"”, "fitness2"))

HHHEHHHEHEEEH AR R R
Various populations with change of migration patterns over time
output recorded each 10 generations
HHHHHHHEEBEEE AR AR R

initial.population.size <- 100

n.loci <- 10

n.alleles.per.locus <- 2

recom.map <- rep(@.5, n.loci-1) #all loci are independent
n.gens <- 100 #total number of simulated generations
n.gens.out <- 10 #output recorded each 10 generations
sex.ratio <- 0.5

mean.fitness <- 4 #mean number of offsprings per breeding pair

evolve 9

d.d <- 0.001 #density-dependent demographic effect

set.seed(1)

startl <- initial.struct(initial.population.size,n.loci,n.alleles.per.locus)

start2 <- array(NA, dim = c(@, n.loci, 2)) #an empty population

start3 <- initial.struct(2,n.loci,n.alleles.per.locus) #a population with two individuals
struct <- list(startl, start2, start3) #initial population structure

#Parameters of type 'dynamics'
param.z1 <- list(sex.ratio)
param.wl <- list(mean.fitness, d.d)

npop <- length(struct) #number of populations

mrl <- 0.01 #initial migration rate

mr2 <- matrix(rep(@.02, npopxnpop), nrow = npop, ncol = npop, byrow = TRUE); diag(mr2) <- 1
mr3 <- 0

mchange <- c(10, 20) #a change of migration pattern occurs after these generations

pop <- evolve(list(startl, start2, start3), c(n.gens, n.gens.out), "dynamic”,
"map", recom.map, param.z = list(param.zl1, param.zl, param.zl),
param.w = list(param.wl,param.wl,param.wl),
migration.rate = list(mchange, mr1, mr2, mr3))

HHHHHHHEHE AR AR
Admixture between three taxa inhabiting two demes
six populations in total

HHHEHHHEHEE AR AR

n.loci <- 10

recom.map <- rep(@.5, n.loci-1) #all loci are independent
n.gens <- 100 #total number of simulated generations

sex.ratio <- 0.5

mean.fitness <- 4 #mean number of offsprings per breeding pair
d.d <- 0.01 #density-dependent demographic effect

set.seed(1)

#The taxa are differentiated at positions 3 and 4

#N=100 | 10 loci | variable number of alleles (average 2) | representing taxon 1

startl <- initial.struct(N=100,nl=n.loci,na=rpois(n.loci, 1) +1,taxon = list(pos=3:4, id=1))
#an empty population

start2 <- array(NA, dim = c(@, n.loci, 2))

#N=100 | 10 loci | two alleles in all loci | representing taxon 2

start3 <- initial.struct(N=10,nl=n.loci,na=2,taxon = list(pos=3:4, id=2))

#N=80 | 10 loci | two alleles in all loci | representing taxon 2

start4 <- initial.struct(N=80,nl=n.loci,na=2,taxon = list(pos=3:4, id=2))

#N=100 | 10 loci | variable number of alleles (average 5) | representing taxon 3

start5 <- initial.struct(N=100,nl=n.loci,na=rpois(n.loci, 5) +1,taxon = list(pos=3:4, id=3))
#an empty population

start6 <- array(NA, dim = c(@, n.loci, 2))

#initial population structure
struct <- list(startl, start2, start3, start4, start5, start6)

#Taxa id for each population
taxa.id <- ¢(1,1,2,2,3,3)

#A different migration pattern between taxa and within taxon

10

evolve

wt <- 0.01 # within taxon
bt <- 0.001 # between taxa
npop <- length(struct)

migration.rate <- matrix(
c(c(1,wt,bt,bt,bt,bt),
c(wt,1,bt,bt,bt,bt),
c(bt,bt,1,wt,bt,bt),
c(bt,bt,wt,1,bt,bt),
c(bt,bt,bt,bt,1,wt),
c(bt,bt,bt,bt,wt,1)), nrow=npop)

#migration.rate <- mmatrix(migration.rate, npop) #alternatively you may use the function mmatrix()

#Parameters of type 'dynamics'
param.z1 <- list(sex.ratio)
param.wl <- list(mean.fitness, d.d)

set.seed(1)
pop <- evolve(struct, n.gens, "dynamic”, "map"”, recom.map, param.z = list(param.zl,
param.zl1, param.zl, param.zl, param.zl, param.zl),
param.w = list(param.wl,param.wl,param.wl, param.wl,param.wl,param.wl),
migration.rate = migration.rate, admixture = list(taxa=taxa.id, dd=TRUE, nmin=20))

HHHEHHHEHEE AR AR
Admixture between two taxa inhabiting three demes
six populations in total
One locus fixed to each population
HHHEHHAREEE AR R

n.loci <- 10 + 1 #one locus will be used to recognize populations
recom.map <- rep(0.5, n.loci-1) #all loci are independent

n.gens <- 100 #total number of simulated generations

sex.ratio <- 0.5

mean.fitness <- 4 #mean number of offsprings per breeding pair
d.d <- 0.01 #density-dependent demographic effect

set.seed(1)
#Two taxa in three demes | six populations in total
#N=10 | 10 loci + 1 loci fixed to each population | biallelic | taxon 1 | population 1 | deme 1
startl <- initial.struct(N=10,nl=n.loci,na=2,

taxon = list(pos=c(1,3:5), id=c(pop=1,alleles=rep(1,3))))
#N=10 | 10 loci + 1 loci fixed to each population | biallelic | taxon 1 | population 2 | deme 2
start2 <- initial.struct(N=10,nl=n.loci,na=2,

taxon = list(pos=c(1,3:5), id=c(pop=2,alleles=rep(1,3))))
#N=10 | 10 loci + 1 loci fixed to each population | biallelic | taxon 1 | population 3 | deme 3
start3 <- initial.struct(N=10,nl=n.loci,na=2,

taxon = list(pos=c(1,3:5), id=c(pop=3,alleles=rep(1,3))))
#N=100 | 10 loci + 1 loci fixed to each population | biallelic | taxon 1 | population 4 | deme 1
start4 <- initial.struct(N=100,nl=n.loci,na=2,

taxon = list(pos=c(1,3:5), id=c(pop=4,alleles=rep(2,3))))
#N=100 | 10 loci + 1 loci fixed to each population | biallelic | taxon 1 | population 5 | deme 2
start5 <- initial.struct(N=100,nl=n.loci,na=2,

taxon = list(pos=c(1,3:5), id=c(pop=5,alleles=rep(2,3))))
#N=100 | 10 loci + 1 loci fixed to each population | biallelic | taxon 1 | population 6 | deme 3
start6 <- initial.struct(N=100,nl=n.loci,na=2,

taxon = list(pos=c(1,3:5), id=c(pop=6,alleles=rep(2,3))))

evolve 11

#initial population structure
struct <- list(startl, start2, start3, start4, start5, start6)

#Taxa id for each population
taxa.id <- ¢(1,1,1,2,2,2)

#A different migration pattern between taxa and within taxon
wt <- 0.01 # within taxon

bt <- 0.001 # between taxa

npop <- length(struct)

migration.rate <- mmatrix(ifelse(outer(taxa.id, taxa.id, "==")==T, wt, bt), npop)[,,1]

#Parameters of type 'dynamics'
param.z1 <- list(sex.ratio)
param.wl <- list(mean.fitness, d.d)

set.seed(1)
pop <- evolve(struct, n.gens, "dynamic”, "map"”, recom.map,
param.z = list(param.z1,param.z1, param.z1, param.z1, param.zl, param.zl),
param.w = list(param.wl,param.wl,param.wl, param.wl,param.wl,param.wl),
migration.rate = migration.rate, admixture = list(taxa=taxa.id, dd=TRUE, nmin=20))

HHHEHHEEHEEE R AR
Two different fitness function per taxa

Types constant and dynamic
One taxon reach extinction before the simulation end
HHHHHHARHE R R

"

strutct: objects of class "struct” with the genetic structure of populations.

It is allocated to the simulation environment.
phenotypeCD <- function(struct, type = c("constant”, "dynamic"), ...){
switch(type,

constant = {
n <- nrow(struct)
if(n %% 2 == 0){
sex <- as.data.frame(cbind(sex =sample(rep(@:1,each=n/2))+1)) #zs
rownames (sex)=rownames(struct)
} else {
neven = floor(n) + floor(n) %% 2 -2
sex <- as.data.frame(cbind(sex =c(sample(rep(@:1,each=neven/2)), sample(@:1,1))+1)) #zs
rownames (sex)=rownames(struct)
}
h
dynamic = {
sex.ratio <- sex.ratio
n <- nrow(struct)
sex <- as.data.frame(cbind(sex = rbinom(n, 1, sex.ratio)+1)) #zs
rownames (sex)=rownames(struct)
)]
if(nrow(sex)==0){ sex[1,1] <-NA }

return(cbind(z = NA, sex = sex))

12

evolve

time.t: running time of the simulation. It is allocated to the simulation environment

n: population size. It is allocated to the simulation environment

t.w.change and newfit are two new variables defining the time the fitness change

and the new fitness value, respectively.

fitnessCD <- function(time.t, n, type = c("constant”, "dynamic"), t.w.change=50, newfit=0, ...){

switch(type,

constant = {
mean.fitness <- 2
if(time.t>t.w.change) {mean.fitness<-newfit}
w <- rep(mean.fitness, n)

1,

dynamic = {
mean.fitness <- mean.fitness

d.d <- d.d
w <- round(pmax(rpois(n, lambda=mean.fitness) - d.d*n, @))
»
return(w)
3
param.z1 <- param.z2 <-param.z3 <- list(sex.ratio = sex.ratio, type = "dynamic")

param.wl <- param.w2 <- param.w3 <- list(mean.fitness = mean.fitness, d.d =d.d, type = "dynamic")

param.z4 <- param.z5 <-param.z6 <- list(type = "constant")
param.w4 <- param.w5 <-param.w6 <- list(type = "constant")

set.seed(1)
#output each 5 generations
pop <- evolve(struct, c(n.gens, 5), "custom”, "map”, recom.map,
param.z = list(param.z1,param.z2, param.z3, param.z4, param.z5, param.z6),
param.w = list(param.wl,param.w2,param.w3, param.w4,param.w5,param.w6),
migration.rate = migration.rate, admixture = list(taxa=taxa.id, dd=TRUE, nmin=20),
fun=c("phenotypeCD"”, "fitnessCD"))

HHH A
Plotting population sizes
B

npop=6
n.outputs=21 #each 5 generations during 100 generations
popsizes<-sapply(1:npop, function(i){
sapply(1:n.outputs, function(j){

dim(popl[[j]I1LLiT11)[1]
»
»

plot(1:21, popsizes[,1], type="1", bty="1", ylab="Population size",
xlab="generations"”, xaxs="i",yaxs="i", las=1, ylim=c(@, 310), lwd=2, col="darkred")
lines(1:21, popsizes[,2], col="darkgoldenrod”, lwd=2)
lines(1:21, popsizes[,3], col="darkorange", lwd=2)
lines(1:21, popsizes[,4], col="darkblue”, lwd=2)
lines(1:21, popsizes[,5], col="darkolivegreen4”, 1lwd=2)
lines(1:21, popsizes[,6], col="darkturquoise”, lwd=2)

legend("bottomright”, legend=paste("pop”, 1:6, sep=""),
col=c("red”, "goldenrod","darkorange”, "blue”, "green”, "turquoise”), lwd=2, bty="n")

fitness 13

End(Not run)

fitness Fitness function

Description
This function computes a fitness value (w) depending on the phenotype (z) of individuals. The
relationship between both variables is assumed to be Gaussian.

Usage
fitness(z, N, b0, bl, b2, b3, d.v)

Arguments
z A data.frame with the phenotype value (’z’) and the sex of each individual in a
population.
N Population size of the population.
bo A numerical value defining the maximum number of offspring that may be gen-
erated by a breeding pair.
b1 A numerical value defining the phenotypic optima of a given population (see
Details).
b2 A numerical value defining the variance of the Gaussian curve.
b3 A numerical value defining the intensity of the density-dependence on the fitness
of individuals in a population of size 'N’.
d.v A numerical value defining a stochastic demographic variant in the fitness of
individuals.
Details

This function is used internally in the function evolve() of type ’selection’ in order to compute the
fitness value of individuals.

The value of ’b1’ represents the z value expected to produce the maximum number of offspring. The
difference in phenotypic optima between the populations drives the strength of *divergent selection’.
Populations exposed to equal phenotypic optima are considered to be under ’concordant selection’.

This fitness function (w) has the following form:

,;(ﬂ)z
w="boexp 2\ 2/ —b3N +¢4(0,04)

Where n, is equal to ’add.loci’, N is the population size and o4 is equal to ’d.v’. The demographic
variant €4 is assumed to be stochastic and normally distributed, with a mean of 0 and standard
variation ’d.v’.

Value

A vector with the fitness value (w) for each individual.

14 initial.struct

References

Quilodran, C. S., Ruegg, K., Sendell-Price, A. T., Anderson, E., Coulson, T. and Clegg, S. (2020).
The multiple population genetic and demographic routes to islands of genomic divergence. Methods
in Ecology and Evolution. doi:10.1111/2041210X.13324.

See Also

evolve phenotype

Examples

We first create a random population with 100 individuals and 10 loci
N <- 100 # Population size

nl <- 10 # Number of additive loci

na <- 4 # Number of alleles per locus

G <- initial.struct(N,nl,na)

Additional parameters are needed for the computation of phenotypes
bvs <- t(array(seq(@,1, length = na) ,c(na, nl)))

sex.ratio <- 0.5

e.v=0.01

Now we compute the additive phenotype value of individuals
phen <- phenotype(G, bvs, nl, sex.ratio, e.v)

Additional parameters are needed for the fitness function

bo <- 6
b1 <- 0.25
b2 <- 0.5
b3 <- 0.01
d.v =1

The fitness values of individuals are computed as follows:
fitness(phen, N, b0, b1, b2, b3, d.v)

initial.struct Initial Structure

Description

This function generates an object of class "struct"” with an initial genetic population structure for
simulations.

Usage

initial.struct(N, nl, na, taxon = list(pos = NULL, id = NULL))

Arguments

N Number of individuals in the initial population

nl Number of simulated loci

https://doi.org/10.1111/2041-210X.13324

phenotype 15

na Number of alleles at each locus. This parameter is either a single value setting
the number of alleles for all loci or a vector with the number of alleles at each
loci.

taxon a list of two vectors providing the fixed positions ’pos’ that differentiate the

taxon and the allelic ’id’ for these positions. The ’id’ could also be a single
value repeated on all fixed positions. The default value is NULL.
Details

This function returns a three-dimensional array. Rows represent individuals and columns the differ-
ent loci. Each element of the array is an integer defining the copy of a given allele at a given locus.
The third dimension of the array has two layers representing a pair of homologous chromosomes.

Value

An object of class "struct” or an array.

See Also

evolve

Examples

##Initial population size of 10 individuals with 5 biallelic loci
initial.population.size=10

n.loci=5

n.alleles.per.locus=2
initial.struct(initial.population.size,n.loci,n.alleles.per.locus)

##A differentiated taxon with fixed alleles in two loci
initial.struct(initial.population.size,n.loci,n.alleles.per.locus, taxon = list(pos=3:4, id=1:2))

phenotype Phenotype function

Description

A function for the computation of additive phenotypes

Usage

phenotype(G, bvs, add.loci, sex.ratio, e.v)

Arguments
G An object of class "struct” with the genetic structure of each individual in the
population.
bvs A matrix with the breeding values of alleles on each loci. The number of rows
is equal to the number of additive loci, while the number of columns is equal to
the maximum number of alleles in a locus.
add.loci An integer with the total number of additive loci participating in the computation

of phenotypes.

16 phenotype

sex.ratio A numerical value defining the sex ratio of populations

e.v A numerical value defining a stochastic environmental variant in the computa-
tion of phenotypes.

Details

This function is used internally in the function evolve() of type ’selection’ in order to compute the
additive phenotype value of individuals.

This phenotype function (z) focuses on an additive genetic genotype-phenotype map. The sum
of values of alleles at each locus gives a breeding value (b,) for each individual at a given locus.
The sum of breeding values buvs across loci gives a breeding value for the phenotypes (z), which is
computed as follows:

Na
z= va +e.(0,0¢)
v=1

Where n, is equal to ’add.loci’ and o, is equal to ’e.v’. The environmental contribution ¢, is
assumed to be stochastic and normally distributed, with a mean of 0 and standard variation ’e.v’.

Value

A data.frame with rows equal to the number of individuals and two columns (’sex’ and ’z’)

References

Quilodran, C. S., Ruegg, K., Sendell-Price, A. T., Anderson, E., Coulson, T. and Clegg, S. (2020).
The multiple population genetic and demographic routes to islands of genomic divergence. Methods
in Ecology and Evolution. doi:10.1111/2041210X.13324.

See Also

evolve fitness

Examples

We first create a random population with 100 individuals and 10 loci
N <- 100 # Population size

nl <- 10 # Number of additive loci

na <- 4 # Number of alleles per locus

G <- initial.struct(N,nl,na)

Additional parameters are needed for the computation of phenotypes
bvs <- t(array(seq(@,1, length = na) ,c(na, nl)))

sex.ratio <- 0.5

e.v=0.01

Now we compute the additive phenotype value of individuals
phenotype(G, bvs, nl, sex.ratio, e.v)

https://doi.org/10.1111/2041-210X.13324

struct2pegas 17

struct2pegas Conversion of class struct to class loci

Description
This function converts an object of class "struct” to an object of class "loci” that can be used by
the package pegas

Usage

struct2pegas(x)

Arguments

X List of objects of class "struct"” with the initial genetic structure of populations.

Examples

We first create a random population with 100 individuals and 10 biallelic loci
N <- 100 # Population size

nl <- 10 # Number of additive loci

na <- 2 # Number of alleles per locus

G <- initial.struct(N,nl,na)

We convert the object of class 'struct' into 'loci'
struct2pegas(list(G))

Index

evolve, 2, 14-16
fitness, 13, 16

glads (glads-package), 2
glads-package, 2

initial.struct, 6, 14
phenotype, 14, 15

struct2pegas, 17

18

	glads-package
	evolve
	fitness
	initial.struct
	phenotype
	struct2pegas
	Index

